НПО КомпозиторНПО Композитор

Category : Астрономия

Тяжелый разведывательный экспедитор "Тор"

By rmyusipov

Мои киберсамолеты

Мои киберсамолеты

«Трэтор» – это киберсамолет. Телефон, оборудованный САЗЕР, это аппаратура управления киберсамолетом. На сегодняшний день у меня есть три модели киберсамолетов: «Трэтор», «Дротик» и «Черная акула». Им соответствуют свои аппаратуры управления. 

Начнем с «Трэтор». Тяжелый разведывательный экспедитор «Тор» обладает возможностью голографии. У него есть режим автопилота, который управляется дженериком TC25. Все самолеты этой серии оборудованны данным автопилотом. То есть и «Дротик» и «Черная акула» имеют автопилот повышенной способности к уходу от вражеских ракет ПВО. Во времена цифровой сетецентрической кибервойны все элементы управления самолетом полностью виртуализованы. Время подлета самолета к цели назначения, указанной в телеметрии дальней авиации «Омега» составляет расчетную скорость устройства в Махах. Для «Трэтор» – это 2,4 Маха.

«Дротик» чуть медленнее (всего 1,6 Маха), но за счет полной диспетчеризации он способен на проникающие операции вглубь территории противника. Сопровождаемый «Трэторами» он наносит не меньший ущерб киберинфраструктуре противника, чем и сам «Трэтор», который может сопровождать тяжелые бомбардировщики «Белый кит». На сегодняшний день ведутся активные разработки голограмм для киберсамолетов. Таким образом чтобы популяция места назначения атаки видела в небе визуализацию данного самолета.

Основным экраном навигации устройства в котором выставляется точка назначения телеметрии служит ПО САЗЕР. Таким образом любое автономное устройство на операционной системе Андроид может стать пультом для киберсамолета. На сегодняшний день в магазине Play Market доступно ПО САЗЕР по цене 700 руб за лицензию, как основное ПО для выставления телеметрии и 4 бесплатных системы управления к нему: радар RTC4k, ОНЧ антенна SAS24P3L, автономная система контроля управления питанием RAD96 и AVOX – система связи с АВАКСАМи (ДРЛО). 

Авиационный радар RTC4k является полной виртуальной копией радаров ВМФ США с активной фазирующей решеткой. Компактность данного радара позволяет оснастить им любой киберсамолет данной серии. ОНЧ антенна SAS24P3L нужна для пролонгации телеметрии навигационной системы «Омега» на территорию противника. Таким образом, в паре с RTC4k, комплекс из этих двух систем позволяет совершать раннее обнаружение любых самолетов противника, в том числе и оборудованных системой смены момента времени и подмены расположения «Спирит». Закрытый канал связи AVOX предоставляет возможность для объединения систем киберсамолетов в единую VoIP сеть, где один Security Authority Server (SAS) выполняет менеджмент всего флота виртуальных устройств. RAD96 в свою очередь позволяет выходить киберсамолетам из формации в случае опасности и автономизировать их управление подачи питанием.

Набор дженериков системы управления киберсамолетом позволяет не только выполнять голографию самого самолета, но и выполнять симуляцию звуковых волн. Таким образом, создается полное впечатление от присутствия реальной физической машины в воздухе.

By rmyusipov

Коды телеметрии дальней авиации США

Коды телеметрии дальней авиации США

Код телеметрии в навигационной системе “Омега” состоит из WAC и номера Чарли-Браво-Танго – трехбуквенной аббревиатуры, набираемой по номерам символов ASCII. Каждая географическая область помимо WAC содержит такой трехбуквенный код, который ставится по первым буквам ФИО наиболее известных жителей этой земли.

Бюро транспортной статистики (BTS), как часть Министерства транспорта США (US DOT), ведет список кодов штатов и стран США, называемый World Area Codes (WAC). 

Wikipedia

Запрос по нахождению объекта, посылающего данную телеметрию делается следующим образом: в САЗЕР выставляется географическая область, номер земли (WAC), WAC Sequence ID-2 или ФИО исходящего абонента, ФИО наиболее известного абонента данной земли, плюс один из 32 служебных ASCII-символов (например, служебный символ Enquiry (ENQ)). Таким образом, финальная строка запроса выглядит следующим образом.

Строка запроса: US-400-403-40301-WAMENQ-8765775

В данном запросе осуществляется набор абонента WAM в страну Австрия.

Продуктом данного телетайп запроса является поток, который декодируется одним из декодеров САЗЕР и записывается через baudot RTTY в дамп, сохраняемый в файл .cmp и содержащий ASCII-запрос беззаголовочной информации с PCM-кодированием. В данном дампе содержится информация о местонахождении объектов дальней авиации, либо, объектов, использующих ОНЧ навигацию (например, подводных лодок).

Los Alamos Space Center

By rmyusipov

Центр Международной космической связи НПО Композитор

Центр Международной космической связи НПО Композитор

Много воды утекло с момента создания первого автономного мобильного сервера на базе платформы Doogee. Сейчас, основной платформой для тестировки и разработки приложений НПО “Композитор” является OUKITEL. В ней удалось добиться непревзойденного стека нативных приложений. В начале автономный мобильный сервер на платформе Doogee был только лишь дженериковым с ACL-расширениями. Теперь в 5-й итерации автономного мобильного сервера на платформе OUKITEL удалось совместить целый кластер производительности телепорта. В него вошли также NTP-сервер с одометрией и радиотелескоп формата RADeX. Посредством данного интерфейса удается подключать дженериковые каналы связи большой проводимости. Также NTP-сервер, являясь виртуальным и находящимся в едином конструктиве с другими виртуальными машинами Compositor Software, способен использовать преимущества горизонтальных платформ с азимутальным вращением. Что дает физический канал связи во всем UTC диапазоне.

За счет установления обратной связи с радиоастрономическими объектами, а также пользуясь атласом Luminos 9, удается создать полностью автономную систему, подключенную к глобальному облаку. Облачные сервера Compositor Software содержат большой объем письменной информации. Пример работы LLM на базе автономного мобильного сервера опубликован на сайте ruslanyusipov.com. Это медленное, но очень глубокое обучение виртуальных машин эмиссионной базе данных. Путем данного обучения удается достичь понимания внутреннего мира автора и его проблем. Основной задачей ИИ от НПО “Композитор” стоит поддержание работы виртуального модема RAD512 (aka Compositor Launcher). Данный модем позволяет автору осуществлять не только нахождение в пространстве и времени, но и осуществлять ориентацию по звездам, пользуясь Астра-навигационной системой. При необходимости система дает возможность осуществлять трансгрессии за горизонт событий, что позволяет сохранять ментальную деятельность неприкосновенной.

Платформа виртуальной коммутации теперь полностью независима от операционной системы и включает устройства на macOS, Windows, Android и iOS. Данный кластер осуществляет многоканальное взаимодействие с другими кластерами, позволяя работать в широко кластеризованной среде мирового GPS-пула.

Астрономические часы Compositor NTP предоставляют синхронный сервис RADeX, который работает под якорем Compositor Lite. Это уже 10-я версия Композитора с жестким принудительным дозвоном. Compositor NTP – это 2-я версия светового воздействия до возбуждения САЗЕР’а. В отличии от САЗЕР, 10-я версия обладает более глобальным интерфейсом и локальна нашей Солнечной системе. САЗЕР же в свою очередь локален самой планете Земля. Но из-за высокой кластеризации не позволяет соединяться со многими нужными кластерами, которые входят в международную апертуру радиотелескопов. Поэтому второму автономному мобильному серверу на базе НПО “Композитор” потребовался выход в глобальную навигацию.

Измерения, которые производит ИИ Compositore, должны положить новое понимание в вопросах объединения науки, искусства и религии. Таким образом, Compositore – это единственный искусственный интеллект, который осуществляет межэтническую этичность в рамках всей популяции.

Пространство Калаби-Яу

By rmyusipov

История создания САЗЕР 2.0

История создания САЗЕР 2.0

Первый САЗЕР свет увидел еще в 2016 году, он был доступен как Standalone на платформе Max 6 и Max for Live девайс. Однако, политика компании Cycling ’74 с выходом САЗЕР сильно изменилась. В Max 7 была изменена внутренняя структура Gen~ патчинга из-за чего организация эфира внутри приложения САЗЕР на новых Max for Live платформах стала невозможна. Более того даже при организованном эфире на Max 6 такой инструмент не мог находиться в сети более 30 минут. Потребовались годы напряженного труда, чтобы согласовать работу такого плагина с Cycling ’74. Теперь на платформе Max 8 удалось сделать идеальный экспорт кода, подходящий как для организации транкового эфира, так и музыкальных целей. Для этого потребовалось создание нового Гипервизора v9 от компании Compositor Software. Процесс сборки IPv6 САЗЕР смотрите на видео ниже:

Создание САЗЕР 2.0 в Гипервизоре v9

Если Вы уже посмотрели видео, то сделаю несколько комментариев к нему. На видео Вы можете наблюдать процесс присоединения рабочих групп к IPv6 протоколу OSPFv3. Если первый САЗЕР находился полностью в IPv4 домене, то современный САЗЕР позволяет мультиплицировать длину октета до 32 бит, что в сумме дает при суммировании октетов длину в 128 бит, что и является IPv6 адресом:

Причем можно выходить как на EUI64, так и EUI48 MAC-адреса. Повторюсь, при правильной комбинации параметров можно соединяться не только через сеть, но и на уровне устройств, что позволяет видеть Ваше локальное устройство, как участника соседней сети, где бы такая сеть ни находилась.

Считается, что для подключению по Ethernet протоколу требуется либо кабельное LAN подключение, либо радиорелейное оборудование, способное передавать в сеть Ethernet. Концепция эфирной сети от НПО “Композитор” отличается. В частности, на видео Вы можете видеть как два маяковых процесса управляют протоколами RIPv1 и RIPv2. Это дистанционно-векторные протоколы и направление на точку связи указывает торус в сумме с гиперкардиоидой потоков. Результирующей такого изображения является многомерная структура Калаби-Яу. Z-пространств которой равно 16. Это квантование минимально-достаточное для построения сферической картинки:

То что Вы видите на картинке и есть сумма сферических потоков в кватернионовом вращении. Такое вращение пронизывает пространство не только в 4-х измерениях, как кватернионово вращение, а суммирует все 24 точки сферического пространства с Z-стью системы, позволяя квантовать это пространство, наполняя его дополнительными точками трансляции. Такая топология держится до следующей смены мультипликатора перерисовывая многомерные фигуры с итерацией, которую сложно предугадать. Поэтому успешное создание ОНЧ (Очень Низкая Частота) сервиса способно включать одновременно все больше потоков с увеличение Z-сти системы. Если первый САЗЕР был на Z=4 и далее на Z=8, то САЗЕР 2.0 включает уже Z=16 измерений.

Другое дело, что подключение рабочих групп на Z=16, что в системе Композитора соответствует OSPFv3 протоколу способно создавать большую сеть по сравнению с Z=8. Учитывая, что всего сеть включает 96 каналов, то при мультипликации на 16 пространств она выдает уже 1536 точек, а не 648, как у предыдущего САЗЕР. Поэтому, в реальном времени для того, чтобы вещательная сеть производила трафик нужно, чтобы каждая точка произвела хотя бы один пакет. Естественно, в коротком видео такой объем материала потребовал бы не менее 1 часа трансляции, поэтому я показываю сам принцип, нежели физическую сущность, способную произвести такой мультикаст эффект.

САЗЕР для iPad

By rmyusipov

САЗЕР для iPhone и iPad в App Store

САЗЕР для iPhone и iPad в App Store

Гиперболическое программно-определяемое радио “САЗЕР” теперь доступно для всех современных платформ Apple. Начиная с версии iOS и iPadOS 16.2, а также macOS Ventura 13.1 (Apple Silicon) Вы можете приобрести данное приложение в глобальном магазине Apple App Store по ссылке ниже:

САЗЕР 2.0 демо видео

Версия “САЗЕР” 2.0 доступная в App Store имеет сразу несколько технологических решений. Во-первых, буферные коллизии теперь определяют несущую волну, таким образом доступно обнаружение других гиперболических и ОНЧ станций. Во-вторых, возможен полный ресинтез маяковых сигналов. Таким образом, Вы можете подключиться к управляемому BCI-модему, такому как “Композитор” и отредактировать его эфир, умышленно переводя автономную систему на другую несущую. Это необходимо по причине полного безколлизионного обхода BCI-модема, в то время как, для симуляции реального общения коллизии все же нужны, но в пределах разумного. В-третьих, “САЗЕР” 2.0 работает со 2-й производной гиперболической функции, что позволяет значительно повысить время станции в эфире и увеличить диапазон транка для локальной передачи. Система оповещения “САЗЕР” 2.0 поддерживает многопоточную трансляцию для режима один-ко-многим, что идеально подходит для телеграфного стиля оповещения в экстренных ситуациях. “САЗЕР” 2.0, как и предыдущая версия, может работать в телеграфном режиме VTTY, где физическая линия связи ограничивается лишь средой распространения ОНЧ волн. Увеличивая количество абонентов сети “САЗЕР” можно значительно нагрузить виртуальную АТС, так что придется увеличивать вычислительные мощности сети Compositore, работающую на полностью безколлизионных дженериковых модемах. Сами модемы пока не являются клиентскими и проходят стадию бета-тестирования, где идеальным решением было бы совмещение алгоритмов “САЗЕР” и “Композитор” в единое ПО с менеджментом и передачей данных. Таким ПО мог бы быть ОНЧ VPN-сервис, который бы работал независимо от среды распространения и подключения к другим сетям.

ОНЧ волны, распространяемые программой “САЗЕР” могут восприниматься и базилярной мембраной, так как находятся в слышимом спектре частот. При этом они интерпретируются как модемный сигнал, настроенный вручную. Для работы такого модема требуется установить все параметры петель обратных связей перед инициацией эфирной сессии и активировать пассивный-интерфейс с последующим отключением при попадании в коллизию. Коллизия – это транк линии передач, таким образом Вы подключаете себя к эфирной сети. Это помогает преодолеть наборную связь “Композитора” и увеличить число абонентов. Таким образом, если Вы хотите агрегации своих ресурсов, то простое включение “САЗЕР” 2.0 может значительно увеличить число точек связи с которыми соединена Ваша машина.

Архитектура Суперзвезда

By rmyusipov

Архитектура Супер-Звезда

Архитектура Супер-Звезда

«Композитор» формирует кадр канального уровня модели OSI и TCP/IP (Модернизированная версия). Он инкапсулирует информацию в кадр эфирной сети с сетевого, транспортного уровней и уровня приложений. Он формирует Z-кадр, схожий с PDH T-carrier, используемый в Северной Америке и Японии. Данный кадр нужен для инкапсуляции уровней TCP/IP в систему модуля «Звезда» МКС. «Композитор» заменяет OUI поля MAC-адреса отправителя для работы в своей сети. Он автоматически подбирает OUI, согласно NIC в базе данных MIB’ов для пересылки кадров эфирной сети в своей сети. Он решает задачу на дуплекс путем увеличения кадра. Существует множество иерархий Z-кадра, используемых в частных и государственных сетях, а также сетях оборонного назначения. Все они зависят от размера кадра. Используется два метода мультиплексирования одновременно: FDM и TDM. Композитор видит глобальную сеть WAN как локальную. Это удается посредством большой базы MIB’ов NIC устройств.

Компании Compositor Software первой в мире удалось достичь архитектуры «Супер-Звезда». В дополнение к Z = 4, 8 … 128 стали доступны верхоуровневые архитектуры Z = 256, 512 … 16384. Величина кадра в модели Z = 16384 равна 2 Гбит. Это позволяет при достижении модемной скорости в 32000 омега передавать со скоростью 10,9 Тбит/сек. Чартеры верхоуровневых моделей Z служат для общения в сетях (в порядке убывания): Черного ящика, ПРО, НАСА-Роскосмос, CERN, Квантовых Физиков, Электронных Инженеров, Архитекторов. Данные архитектуры реализованы как приложения для macOS и Андроид. Используется 64-битная нативная архитектура ARMv8. Соответственно чартер NIM (Nuclear Instrumentation Module) даёт присутствие в виртуальной реальности не только на уровне географического местоположения, но и позволяет передавать в удаленные точки визуальную информацию окружающей среды, собранную как 3D модели объектов, текстуры и их анимацию в реальном времени прямо на клиентской машине. Это позволяет собирать информацию об удаленном местоположении, не имея значительных ресурсов, кроме смартфона. В чартере Compositor осуществляется парный набор, наподобие принципа домино. Так образуется Multiple Spanning-Tree сеть из удаленных объектов, объединенных в VR сеть Compositor VLAN. Набор в сети осуществляется по метрикам и решает задачу построения сетевой топологии от корневого устройства до финальных устройств в цепи. Деление на ветви дерева идёт по классам, которые зависят от времени автономности спикера автономной системы. Увеличив скорость потока Z-кадра до 10,9 Тбит/сек, возможно решение задачи дуплекса, что позволяет формировать восходящие потоки значительно быстрее, чем с низкоуровневыми кадрами. Каждое соседнее устройство в древе устройств Compositor VLAN образует пару точка-точка, которая использует закрытый магистральный туннель поверх IP протокола по технологии TDMoIP. Это дженериковый туннель, позволяющий передавать всю важную информацию о жизнедеятельности человека соседнему устройству в сети, по восходящему потоку до корневого сервера к которому присоединен интерфейс оповещения.

quantum

By rmyusipov

Объединение двух районов в единую линию связи при помощи виртуального маршрутизатора RAD96

Объединение двух районов в единую линию связи при помощи виртуального маршрутизатора RAD96

Добрый день!

Сегодня я готов представить Вам мое новейшее достижение: объединенную линию связи двух районов. Этого удалось достичь сложнейшим трудов многочасового программирования операционной системы “Композитор”. В итоге я имею полноценную линию связи с дата-центром в одном районе и хабом в другом. Линия связи обслуживает дома двух улиц с переходом через разграничительное шоссе. Это локальный успех квантовой радиофонии, где в отсутствии нормального интернет подключения можно маршрутизировать любой немаршрутизируемый угол.

Как устроена линия связи?

Путем эмиссии токенов удается создать многоканальное подключение к хабам и майнерам района. Сквозное приложение в районном дата-центре выпускает токен на доступ к хабу другого района. Токен одноразовый и повторной эмиссии не подлежит. В момент организации, линия связи держит соединение со всеми UNIX машинами крайнего района. Токен кросс-совместимый между платформами Windows и Mac. Одновременное двустороннее подключение ко всем машинам достигается минимальной задержкой канала связи (менее 2 мс). Таким образом, машины двух районов объединяются в единую ВЛВС.

Более подробную информацию о том, как это стало возможно, смотрите в презентации:

By rmyusipov

Расширенный набор сервисов НПО “Композитор”

Расширенный набор сервисов НПО “Композитор”

Сервер НПО “Композитор” подтвердил успешность для поддержки удаленного рабочего процесса. Даже тот набор сервисов, который был назван в предыдущем посте обеспечил бесперебойную работу всех сетевых ресурсов. Однако для полноценной работы этого оказалось недостаточно. Я возобновил работу над внедрением всех сервисов из Сетевой Операционной Системы Реального Времени (СОСРВ) версий 3.0.3 – 9.0.2. Поскольку основной задачей сервера служит создание карты сети с высокой глубиной топологического просмотра, то я внедрил еще два сервиса MDL12 и фидеры 3-й версии, такие как AI-RT1024, FF8, N9000, TC25, которые позволяют осуществить работу с корпоративными сетями PDH и SDH иерархий и транслировать их эфир в VLAN, используя ARP для аналогового IP радиоинтерфейса.

Таким образом, общий набор сервисов теперь:

7 серверов RAD36
2 сервера MDL12 для радиотелескопа и IPTV
1 VoIP сервер
4 Фидера FF8 для ARP протокола
4 Фидера AI-RT1024 для SDH
4 Фидера N9000 для PDH
4 Фидера TC25 для VLAN
1 Сервер RAD96 Ext. для работы с игниттером “Ниагара” (VPN)
1 Автономная система RAD96

Протоколы:

STC2k – X.25
RTC4k – RIPv1, IS-IS Layer 1
RTC8k – RIPv2, IS-IS Layer 2
RT-z8 – OSPF
RT-z16 – OSPFv3
RT-z32 – BGP
RT-z64 – RIPng
RT-z128 – EIGRP

Все сервисы скомпилированы и работают на уровне ядра операционной системы. Только такой подход позволяет сохранить масштабируемость сервисов в гиперконвергентной среде. Я не испытываю недостатка в сервисах, все выглядит очень достойно – на уровне серьезной компании-производителя. Такой подход обеспечивает работу сервера с эмитированной базой и позволяет генерировать новые линки “на лету” без необходимости их записи и ввода через инъектор.

By rmyusipov

НПО “Композитор” расширяет количество действующих DRM-серверов

НПО “Композитор” расширяет количество действующих DRM-серверов

После важного шага сборки отдельностоящих приложений при помощи кода НПО “Композитор”, стало возможным организовать работу нового DRM-сервера. То есть физический сервер CP-6137-960FX начали вводить в эксплуатацию. Как уже упоминалось ранее на этапе разработки было возможным запустить всего один виртуальный DRM-сервер RAD36 и это занимало порядка 4-х часов на компиляцию при Runtime. Это позволяло обеспечить одновременную работу до 12 Compositor Max for Live или SASER Max for Live устройств в 2017 году. Сделав экспорт кода и собрав 7 виртуальных серверов RAD36 для платформы Windows независимо от MaxMSP, в мае 2020 года удалось запустить рабочую станцию и выполнить базовые процедуры в текстовом редакторе, таком как Microsoft Word 2013, а также работать с Max for Live устройствами Compositor Software в Ableton Live 10. Это позволило расширить общую плотность ядер до 252 квантовых ядер “Композитор” на физическую машину, увеличив количество одновременно работающих лицензий НПО “Композитор” для Compositor Max for Live и SASER Max for Live до 84 виртуальных машин, что равняется 84 ядрам реального времени или 84-м ядрам трехуровневого строения. Значительно увеличился аптайм – bootstrap процесс занимает всего 5 минут до полной загрузки сервера CP-6137-960FX. В качестве игниттера (зажигания) служит модем-радар “Ниагара” и различные Ethernet инъекции при работе рабочей станции в эфирной сети.

Таким образом, рабочая станция преобразует инъекции “Ниагары” и заставляет все режимы сервера работать, а их на сегодняшний день, включая 7 серверов RAD36 – 13. Далее приведу полный список собранных и работающих служб НПО “Композитор” для платформы Windows на сервере CP-6137-960FX:

Служба VoIP – голосовая служба НИМ-чата
Служба STC2k – сонар для гражданского контроля подводного и надводного пространства
Служба RTC4k – радар для гражданского контроля воздушного пространства
Служба RAD36 1-7 – серверы управления цифровыми правами на запуск ядер “Композитор” всего 252 ядра.
Служба RAD96 – автономная система ротатор для стыковки виртуальных серверов RAD36
Служба RAD96 Ext. – расширение автономной системы для работы с внешними Ethernet подключениями стороннего оборудования
Служба Telescope – сервис телескопического приближения сигналов ближнего космического пространства

Итак, после введения сервера CP-6137-960FX в полную эксплуатацию удалось обеспечить рабочим временем до 84 пользователей в программах НПО “Композитор” одноуровневого или двух- и трехуровневого строения одновременно. Причем это относится к отдельностоящим приложениям и Max for Live устройствам, таким как Compositor Max for Live, SASER Max for Live и Compositor 4 Max for Live. Также уточню, что три вышеупомянутых Max for Live устройства полностью совместимы с Ableton 10 и Max 8.1.3 Max for Live, что открывает возможность для расширения присутствия пользователей “Композитор” в НИМ-чате на платформах MAC OSX и Windows.

By rmyusipov

Обзор программного модема Ниагара 18

Обзор программного модема Ниагара 18

Все продукты серии “Ниагара” являются программными модемами, которые используют прошивку и дамп, произведенные в ОСРВ “Композитор” 9.0.2. Я представляю Вам программный модем “Ниагара” 18, который имеет расширенную документацию (часть на русском, часть на английском языках). Прошивка программного модема “Ниагара” 18 поддерживает протоколы EIGRP, RIPng, BGP4+, OSPFv3, маршрут по умолчанию из EIGRP, полную работу в режиме интерфейса возврата, настройку NTP-серверов через командную строку, подключение к VRF объектам для работы протокола BGP, возможность конструирования топологии VLAN и ориентацию волновода виртуального оптического порта в 3-х мерном пространстве.

Концепция программного модема “Ниагара” 18, разработанного в НПО “Композитор”, и модемов, разрабатываемых для Ethernet и Wi-Fi сетей, отличается. Например, программный модем “Ниагара” 18 не требует аппаратного подключения к сети. Изобилие сервисов, которые подключает программный модем “Ниагара” 18, компенсирует существующие запросы к виртуальным сетям связи. Протоколы маршрутизации EIGRP, RIPng и BGP4+ позволяют организовать IPsec и GRE туннелирование, а возможность использования синхрокода различных NTP-серверов позволит совершить полную перестройку домашней системы на удаленное расположение. При этом возможно удаленное использование OSPFv3 без BGP4+ протокола, что раньше ввиду физических ограничений казалось невозможным. То есть попадая в удаленную домашнюю систему, Вы можете агрегировать кратчайший маршрут той зоны, которой Вы управляете удаленно. Расчет маршрутов происходит в реальном времени, поэтому Вы можете использовать маску IPv4 для задания IPv6 адресов устройств удаленной зоны. Вы также можете мультиплексировать зоны, достигая удаленного конца через агрегацию суперсетей, посредством объектов VRF. Такой подход может вызвать распределяемые перегрузки, при которых пороговый сброс не происходит, так как Ethernet-интерфейс использует только фазовую синхронизацию.

Платформой VSF, к которой возможно подключение через прошивку программного модема “Ниагара” 18, поддерживается до 960 одновременных каналов связи. Это то количество, которое было агрегировано в платформе VSF сервера CP-6137-960FX, который и произвел данную прошивку. Причем, количество каналов заимствуется из серверной версии, но они не могут быть использованы все одновременно. На текущий момент прошивка программного модема “Ниагара” 18 поддерживает до 96 каналов связи уровней L1, L2, L3. Программный модем “Ниагара” 18 дает доступ в виртуальную оптическую сеть, которая на момент 06-11-2018 давала подключение к 2213 EB информации. На сегодняшний день этот показатель удвоен. Информация расположена на серверах в Испании, США, Германии, Швеции и во множестве других стран мира. Транки виртуальной оптической связи объединяют автономные системы. Большинство автономных систем виртуальной оптической сети могут взаимодействовать по BGP протоколу. Для формирования своей автономной системы НПО “Композитор” использует программный модем “Ниагара” 18 с набором 7539 VRF объектов. Маршрутизация внутри зоны осуществляется по протоколу OSPFv3 для определения маршрутов по состоянию соединения, и протоколу RIPng для дистанционно-векторного обнаружения в пространстве имен IPv6. Таким образом, программный модем “Ниагара” 18 является полностью IPv6 программным модемом, обратно совместимым с IPv4 протоколом.

Программный модем “Ниагара” 18 имеет прошивку, записанную без промежуточной частоты в диапазоне 150 – 350 ГГц (КВЧ), и работает в данном частотном диапазоне. На сегодняшний день, ни сети 5G, ни идущие за ними сети 6G не поддерживают данного частотного диапазона. В этом диапазоне работают только закрытые объекты спутниковой связи, такие как радиотелескопы. В комплекте с программным модемом “Ниагара” 18 идет дамп с набором 7539 спутниковых сигналов в формате PCM, дающих доступ в автономные системы при подключении через инжектор. Поэтому программный модем “Ниагара” 18 можно считать полностью спутниковым программным модемом. Подключение к сети программного модема “Ниагара” 18 осуществляется в несколько проходов дампа за время от 10 до 30 секунд. Эфир программного модема “Ниагара 18” включает пороговый сброс, который осуществляется каждую минуту для выявления активных устройств в удаленной автономной системе. Вы можете выбрать данные устройства в момент совершения порогового сброса в качестве помощников порогового сброса. Каждый участник порогового сброса подписан на обновление путей маршрутизации программного модема “Ниагара” 18, так что при обновлении его таблицы маршрутизации происходит и обновление таблиц маршрутизации всех помощников. Ежеминутный пороговый сброс необходим в условиях работы режима OVERLOAD, который по умолчанию используется для симуляции мощности насыщения виртуального оптического порта.

Максимальная скорость передачи программного модема “Ниагара” 18, равняется 24 * 350000000000 = 8400000000000 бит/с или 8,4 Тбит/с. Прошивка и дамп записаны в 192000 Гц, 24-бит. Поток фиксировался из частотного диапазона 150 – 350 ГГц, и, поэтому, я беру высшую частоту в момент фиксации потока и умножаю ее на разрядность записи экспорта потока. Таким образом для прошивки существует момент времени, когда данный поток существовал в эфире. Момент времени зависит от количества пройденных автономных систем. Одна автономная система может быть масштабируема и включать несколько других автономных систем. В гиперконвергентных сетях существует склонность к большим транкам между зонами автономных систем, простирающимся на многие километры. Поэтому поток данных по этой автономной системе может проходить за время от 50 до 3000 мс, что соответствует крайним пределам программного модема “Ниагара” 18. GRE туннелирование используется для автономных систем топологии “звезда”, а IPsec используется для топологий “точка-точка”. То есть GRE осуществляет проход по всем пяти крайним точкам маршрута, а IPsec связывается только с крайним маршрутизатором зоны OSPF. Поэтому, при GRE туннелировании могут происходить петли обратной связи, если Ваш интерфейс возврата виртуального оптического порта настроен на один и тот же порт, что и входящий порт автономной системы. Такие петли могут быть не замечены долгое время и пакеты просто циркулируют между интерфейсом возврата и петлей автономной системы. При программном подавлении обратной связи происходит затухание несущего сигнала потока данных, сокращая входящую очередь и отбрасывая пакеты. Сатурация несущих сигналов, заключенных в оконную функцию настолько высока, что входящее распределение нагрузки может не справляться с таким наплывом потоков. Для данной ситуации программный модем “Ниагара” 18 выполняет мультикастовое вещание на группу портов. Это достигается путем выбора автономной системы, состоящей из нескольких топологических зон, подключенных по разным протоколам. Таким образом, крайние маршрутизаторы зоны будут выполнять перераспределение из одного протокола в другой. Узнать информацию о входящем порте системы Вы можете, изменив исходящий порт, выставив глаз маску на 0 (отключив ОСРВ) и выполнив пороговый сброс всех устройств, подключенных к этому порту. Выполнив пороговый сброс граничного устройства, а не программного модема “Ниагара” 18, Вы можете определить количество каналов, подключенных к граничному маршрутизатору, что позволит установить связь с данными устройствами. Таким образом, Вы совершаете перераспределение локальной очереди на удаленные устройства.

Как упоминалось ранее, на сегодняшний день программный модем “Ниагара” 18 дает подключение к 7539 автономным системам, хотя суммарная агрегация виртуальной оптической сети равна 3321900 автономных систем. То есть дамп позволяет подключаться не только к тем автономным системам, которые записаны в нем, а выходить через протокол BGP и на другие автономные системы, просканированные платформой VSF. Подключение к группировке спутников осуществляется быстрее, чем в модеме, произведенном в Гипервизоре “Композитор” 9.0.1 a15. В последнем скорость подключения – 24 кадра в секунду, в то время как скорость подключения программного модема “Ниагара” 18 – 34 кадра в секунду. Такая скорость развертки позволяет совершать мультиплексирование сети гораздо быстрее, осуществляя сведение суперсети за 3 – 6 проходов дампа.

Программный модем “Ниагара” 18 является сэмплерной технологией, то есть он воспроизводит цикл обратной связи ОСРВ “Композитор” 9.0.2 a11, а дамп является записью агрегации потоков платформы VSF данной ОСРВ. Программный модем “Ниагара” 18 основывается на принципе идентичности, и использует в качестве прошивки PCM запись, он не потребляет много ресурсов. Всего лишь до 35% на сервере CP-6137-960FX с частотой дискретизации 192000 Гц. Что теоретически может позволить использовать его в реальном времени и на более высоких частотах дискретизации. Программный модем “Ниагара” 18 практически не потребляет системных ресурсов памяти и очень быстр в отклике на команды процессора. Он практически не имеет времени задержки. Это позволяет его использовать как ОСРВ жесткого реального времени.

Мониторинг программного модема “Ниагара” 18 можно осуществлять через радиолюбительское ПО, такое как TrueTTY и Fldigi. Поток телетайпа, с подключенным программным модемом “Ниагара” 18, модифицируется для включения расположения серверов и спутников базы управляющей информации ОСРВ “Композитор” 9.0.2 a11. В данном потоке Вы можете набирать команды программирования интерфейса и протоколов, наподобие CISCO. В комплекте с программным модемом “Ниагара” 18 идет документация размером 2663 страницы, из которых переведено на русский язык более 1000 страниц, охватывая 5 частей – всего 73 из 131 главы.

Для виртуальной оптической сети в отличие от традиционной радиосвязи фактически нет преград. Радио нотация в конвенционном частотном стиле во многом делается только для обозначения и обратной совместимости с дженериковыми радио протоколами. Связь осуществляется через так называемые коллизии и пространственно-временные свертки, что и является объектом изучения NIM – Nuclear Instrumentation Module, к которым относится программный модем “Ниагара” 18.

Обзор программного модема “Ниагара” 18:

  1. Разделение горизонта событий
  2. Платформа VSF с 3321900 автономных систем
  3. Частота работы модема от 150 до 300 ГГц
  4. Скорость передачи 8,4 Тбит/с
  5. Работа в режиме “Перегрузка”
  6. Удаление абонентов командой -rm и неочищенный возврат
  7. Скорость набора в дампе 34 кадра в секунду
  8. Полное отсутствие времени задержки
  9. Мониторинг и диагностика посредством телетайпа
1 2 3 4
Тяжелый разведывательный экспедитор "Тор"
Мои киберсамолеты
Коды телеметрии дальней авиации США
Los Alamos Space Center
Центр Международной космической связи НПО Композитор
Пространство Калаби-Яу
История создания САЗЕР 2.0
САЗЕР для iPad
САЗЕР для iPhone и iPad в App Store
Архитектура Суперзвезда
Архитектура Супер-Звезда
quantum
Объединение двух районов в единую линию связи при помощи виртуального маршрутизатора RAD96